
International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018                                                                                           1747 
ISSN 2229-5518  
 

IJSER © 2018 
http://www.ijser.org 

Rules Based Method For Software Vulnerabilities 
Levels Evaluation Using Machine Learning 

 
DIAKO Doffou Jérôme, ACHIEPO Odilon Yapo M., MENSAH Edoete Patrice 

 

Abstract- Cybercrime is on the increase with diversified attacks, particularly on software applications [1]. To combat software piracy, 
researchers have developed vulnerability scores using a standardized scoring mechanism to assess the level of vulnerability of software 
applications [2].  However, the calculation of this score is very complex in practice and difficult to use in industry and research [3]. In this 
paper we propose an approach to compute directely the software vulnerability level hat avoids the complexity of the existing method based 
on complex score calculation. Our method is developed from a modeling of international vulnerability data using decision tree approach 
and is based on rules expressed in first-order logic. Instead of generate vulnerability scores very close to those obtained by the complex 
classical method, our method is able to give directly the software vulnerability level, the advantage of being extremely simple to use both in 
research and in the industry. 
 
Index Terms—Machine Learning, Software Vulnerabilities, CVSS Score, Vulnerability Levels, Decision Tree, R Programming language.  

 

———————————————————— 
 

1 INTRODUCTION     
n the field of computer security, a vulnerability is a 
weakness in a computer system that allows an attacker to 
compromise the integrity of that system, i.e. its normal 

functioning, confidentiality or integrity of the data it 
contains[4][5]. According to the research site [6] we see the 
number of existing software vulnerabilities and their trend 
from 2008 to 2017. 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
Hackers can exploit software vulnerabilities to compromise 

the security of the computer systems. To remedy this problem, 
security service providers and non-profit organizations have 
expanded to implement procedures to classify vulnerabilities. 
 We have some organizations such as the National Vulnerability 
Database (NVD)[7], US-CERT, SANS[8], SECUNIA[9], ISS X-
Force[10], VUPEN SECURITY[11] and many others institutions 
propose their own  method for software vulnerability 
evaluation . Unfortunately, there has been no cohesion or 
interoperability between these systems.  To effectively address 
this approach, researchers have developed vulnerability scores 
using a standardized scoring mechanism to assess the level of 

vulnerability of software applications [2]. 
  However, this score is very complex in practice and difficult to 
use in industry and research because of the complexity of its 
calculation [3]. 
In this paper we propose an approach for evaluating software 
vulnerability levels that avoids the complexity of the initial 
software vulnerability score computing method based 
onscores calculation.  Our method is developed from a 
modeling of international vulnerability data using decision tree 
technology. The developed method is reduce to some rules 
expressed in first-order logic and generated an assessment of 
vulnerability while having the advantage of being extremely 
easy to use both in industry and in research. 

2 RELATED WORKS 
In recent years, many IT security projects implemented by 
suppliers and non-governmental organizations have developed 
and implemented procedures to score vulnerable information 
systems.  Companies such as Cisco System, Qualys, Symantec, 
Carnegie Mellon are promoting an evaluation system that will 
standardize the evaluation system called CVSS (Common 
Vulnerability Scoring System). In 2005, the National 
Infrastructure Advisory Council (NIAC) selected FIRST to be 
the custodian of the Common Vulnerability Assessment System 
(CVSS), the new standard for vulnerability scoring. This 
assessment system is designed to provide open and universal 
severity indices of software vulnerabilities. FIRST will work 
closely with CERT / CC and MITRE on this issue. The Common 
Vulnerability Scoring System (CVSS) provides a means of 
capturing the main characteristics of a vulnerability and 
producing a numerical score that reflects its severity [2].After 
using version 1 of the CVSS, more than a dozen CVSS-SIG 
members worked intensively in 2006 and 2007 to revise and 
improve CVSS v1 by testing hundreds of real vulnerabilities in 
order to implement CVSS v2[12].The CVSS v2 has been widely 
adopted by various organizations, it has been a help for 

I 

FIG. 1  
 TRENDS IN SOFTWARE VULNERABILITIES 

Source: https://www.cvedetails.com/vulnerabilities-by-types.php 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018                                                                                    1748 
ISSN 2229-5518 

IJSER © 2017 
http://www.ijser.org  

organizations in managing patches in measuring the severity of 
vulnerability. 

3 METHODS OF VULNERABILITY ASSEMENT 
There are many vulnerability rating systems, which are 
supported by different organizations. In general, there are two 
ways to describe the severity of vulnerabilities. There is the 
qualitative evaluation system and the quantitative evaluation 
system. In this section, we will introduce two databases with 
different vulnerabilities. 
 
3.1 Qualitative Method  
IBM® X-Force® produces many leading security research 
assets to help customers, researchers and the general public 
better understand the latest security risks and anticipate new 
threats.  Its database is one of the most comprehensive in the 
world on threats and vulnerabilities. It contains more than 
40,000 vulnerabilities. IBM® X-Force® uses a qualitative 
vulnerability assessment method and assigns risk levels to 
each security problem to describe the extent of damage that 
could be caused by a specific security problem. In Table 1, 
there are three possible levels of risk of vulnerability [10]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
The IBM® X-Force® Vulnerability Classification System 
method is a typical example of a qualitative method. In this 
method, security researchers directly give a level of threat (high, 
medium and low) for a vulnerability based on its attributes. 

 

 

3.2 Quantitative Method             
The NVD is the U.S. government's repository for standards-
based vulnerability management data represented using the 
Security Content Automation Protocol (SCAP). This data 
automates vulnerability management, security measures and 
compliance. The NVD includes databases of references to 
security checklists, security related software vulnerabilities, 
configuration errors, product names and impact indicators.  
The NVD supports the Common Vulnerability Scoring System 
(CVSS) version 2 standard initiative for all CVE vulnerabilities. 
The NVD provides low, medium, and high severity scoring in 
addition to the numerical CVSS scores. CVSS is a well-known 
quantitative vulnerability rating system, as shown in Table 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The scores are calculated in order so that the base score is used 
to calculate the time score and the time score is used to 
calculate the environmental score. 
 

4 CVSS SCORE ANALYSIS 
The CVSS is built from the base metric which gives us an 

evaluation of the base CVSS which will then be weighted with 
the time metric and then with the environmental metric.  
These three metrics are defined as follows: 

 The basic metric is unique and immutable; it is based 
on the intrinsic qualities of vulnerability. 

  The time metric is unique but can change over time. 
 Environmental metrics are multiple and evolve 

according to the IT environment. It depends on the computer 
system in which it is present. 
These scores are calculated using a complex equation that is 
implemented in a calculator. Here is the presentation of this 
equation. 
The equation is presented below CVSS Base Score Equation                                                

( ) ( )  .6* Im  .4* -1.5 * Im        BaseScore pact Exploitability f pact= + (1)
( ) ( ) ( )( )1  1   *  1   *  1  (  10.41 *  1  ConfImpact IntegImpact AvailImpactImpact − − − −= −  (2) 

 20 *   *   *  AccessComplexity Authentication AccessVector=Exploitability     (3) 
( )  0  0;  1.176 if Impact otherwise= =f Impact (.4) 

———————————————— 
• DIAKO DOFFOU JEROME is a graduate student in computer science (EDP 

INPHB Yamoussoukro, Côte d'Ivoire), kingdjako@gmail.com 
• ACHIEPO ODILON YAPO MELAINE is an Assistant Master in Artificial 

Intelligence (University of Korhogo, Côte d’Ivoire), kingodilon@gmail.com 
• MENSAH EDOETE PATRICE is Professor in Theorical and Applied 

Mathematics (INPHB Yamoussoukro, Côte d'Ivoire),pemensah@hotmail.com 

TABLE 1 
  X-FORCE VULNERABILITY ASSESSMENT SYSTEM. 

Rating Definition 
High Security issues that allow immediate 

remote or local access, or immediate 
execution of code or commands, with 
unauthorized privileges 

Medium Security issues that have the potential to 
grant access or enable code execution 
through complex or lengthy operating 
procedures, or low-risk issues applied to 
major internet components 

Bass Security problems that deny service or 
provide non-systemic information that 
could be used to formulate structured 
attacks against a target, but do not 
directly obtain unauthorized access. 

 

TABLE 2  
 VULNERABILITY ASSESSMENT SYSTEM BY CVSS V2 

Rating Definition 
High Vulnerabilities will be classified as ‘’High 

severity’’ if they have a base CVSS score of 7.0 
to 10.0 

Medium Vulnerabilities will be classified as ‘’Medium 
severity’’ if they have a base CVSS score of 4.0 
to 6.9 

Low Vulnerabilities will be classified as ‘‘Low’’ if 
they have a base CVSS score of 0.0 to 3.9 

 IJSER

http://www.ijser.org/
mailto:kingdjako@gmail.com
mailto:pemensah@hotmail.com


International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018                                                                                    1749 
ISSN 2229-5518 

IJSER © 2017 
http://www.ijser.org  

 
To give the basic score of a vulnerability, this calculator uses 
six parameters which are 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Given the complexity, CVSS-SIG researchers implemented this 
equation as a calculator. As an illustration we have 
 
Example of vulnerability score with CVSS v2 for CVE-2003-
0062 vulnerability 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BASE METRIC   EVALUATION         SCORE 
----------------------------------------            
 Access Vector               [Local]         (0.395) 
Access Complexity       [High]       (0.35) 
Authentication               [None]                 (0.704) 
Confidentiality Impact [Complete]         (0.66) 
Integrity Impact             [Complete]         (0.66) 
Availability Impact       [Complete]          (0.66) 
---------------------------------------- 

FORMULA BASE SCORE 
---------------------------------------- 
Impact = 10.41*(1-(0.34*0.34*0.34)) == 10.0 
Exploitability = 20*0.35*0.704*0.395 == 1.9 
f(Impact) = 1.176 
BaseScore =((0.6*10)+(0.4*1.9)-1.5)*1.1 ==(6.2) 
(AV: L/AC:H/Au:N/C:C/I:C/A:C) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This gives a score of 6.2 which is equivalent to an average 
vulnerability, see Table 2.  
 
The difficulties of this approach is that you have to be a safety 
specialist to understand these six parameters that are already 
complex to understand, which leads to the complex use of the 
calculator. 
 
Then the CVSS score cannot be calculated if a required 
attribute is not defined. In this case, the severity of the 
problem is categorized as Undetermined. 

 

5 PROPOSED APPROACH 
 
Our approach is to propose a learning model that allows us  

to assess the level of software vulnerabilities.  
To achieve this, we will: 

 Develop a vulnerability database from 2010 to 2018; 
 Identify the essential parameters for assessing the 

level of software vulnerability; 

TABLE 5  
 CALCULATOR CVSS V2 ENABLED 

BASE SCORE METRICS 
Exploitability Metrics Impact Metrics 
ATTACK VECTOR (AV) 
Local (AV: L) 
Adjacent Network (AV: A) 
Network (AV: N) 

CONFIDENTIALITY IMPACT 
(C) 
None (C: N) 
Partial (C: P) 
Complete (C:C) 

ACCESS COMPLEXITY (AC) 
High (AC:H) 
Medium (AC:M) 
Low (AC: L) 

INTEGRITY IMPACT (I) 
None (I: N) 
Partial (I: P) 
Complete (I:C) 

AUTHENTICATION (AU) 
Multiple (Au:M) 
Single (Au: S) 
None (Au: N) 
 

AVAILABILITY IMPACT (A) 
None (A: N) 
Partial (A: P) 
Complete (A:C) 

 

TABLE 3  
 CHARACTERISTICS OF SOFTWARE VULNERABILITY 

CHARACTERISTICS VALUES CVSS WEIGHTS 

Access vector  
Local(L) 
Adjacent Network(AN) 
Network (N) 

0.395 
 0.646 

 1 

Authentication  
None (N) 
 Single(S) 
 Multiple(M) 

0.704 
 0.56 
0.45 

Access complexity  
High(H) 
 Medium(M) 
 Low (L) 

0.35 
 0.61 
 0.71 

Integrity impact 
None(N) 
 Partial(P) 
Complete(C) 

0.0 
0.275 
0.660 

Confidentiality 
impact  

None(N) 
 Partial(P) 
Complete(C)  

0 
0.275 

   0.660 

Availability impact 
None(N) 
 Partial(P) 
Complete(C)  

0 
0.275 

   0.660 
 

TABLE 4  
 CVSS V2 CALCULATOR 

BASE SCORE METRICS 
Exploitability Metrics Impact Metrics 
ATTACK VECTOR (AV) 
Local (AV: L) 
Adjacent Network (AV: A) 
Network (AV: N) 

CONFIDENTIALITY IMPACT 
(C) 
None (C: N) 
Partial (C: P) 
Complete (C:C) 

ACCESS COMPLEXITY (AC) 
High (AC:H) 
Medium (AC:M) 
Low (AC: L) 

INTEGRITY IMPACT (I) 
None (I: N) 
Partial (I: P) 
Complete (I:C) 

AUTHENTICATION (AU) 
Multiple (Au:M) 
Single (Au: S) 
None (Au: N) 
 

AVAILABILITY IMPACT (A) 
None (A: N) 
Partial (A: P) 
Complete (A:C) 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018                                                                                    1750 
ISSN 2229-5518 

IJSER © 2017 
http://www.ijser.org  

 Predict the level of software vulnerabilities for 
building an artificial learning model. 

This approach is illustrated by the following diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.1 Building The Vulnerability Database 

To build the database, we collected data from the NVD and 
Cvedetail.com [6], using queries on the CVSS score, years of 
vulnerability discovery and types of vulnerabilities. After 
receiving the data, we proceed to extract the redundant 
information. which allowed us to build our training database. 
Illustrated by the following Fig 3 and Table 6: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

5.2 Data Preprocessing And Preparation 
 

In this part we proceeded as follows: 
*For data pre-processing, we have: 
1- After building the database, we created the "Level" 

variable that will allow us to assess a vulnerability; 
2- Remove unnecessary variables and correct errors (on 

AccessVector); 
     3- Partition data into learning and test samples. 
 
 
 
 
 
 
 
 
 

     * For the preparation of the data; we proceeded: 
  1- In Search of the Best Predictors (With the following 
learning sample):  "AccessVector" "AccessComplexity" 
"AvailImpact" "Authentication" "ConfImpact" "IntegImpact 
As illustrated by the following graph: 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
2-For the following we have kept the best predictors, which 
allows us to go from 9 variables to 7 variables as shown here 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 6 
 DATASET OVERVIEW 

 
CVEID Vulnerability Score Access 

Complexity 
Authentication Access 

Vector 
Conf 
Impact 

Integ 
Impact 

Avail 
Impact 

CVE-2000-
0864 

Obtain 
Information 

6,2 High Not required Local Complete Complete Complete 

FIG. 2  
PROCESS FOR CONDUCTING THE SOFTWARE VULNERABILITY LEVEL 

ASSESSMENT 

 

FIG. 3  
VULNERABILITY DATABASE ACQUISITION PROCESS 

 

FIG. 5 
 THE BEST PREDICTORS 

 

 

FIG.4  
 DATA PREPROCESSING 

 

FIG. 6 
DATA PREPARATION 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018                                                                                    1751 
ISSN 2229-5518 

IJSER © 2017 
http://www.ijser.org  

 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3 Model Construction (Decision Tree) 
 
Our model is based on decision trees. Decision Tree is 

a very popular classifier that serves as the basis for many 
set classifiers and is represented as its name suggests in 
the form of a tree graph [13][14][15][16][17]. Each of the 
tree structure represents a condition based on the 
characteristics, the branches below each represent the 
output of the condition and finally, the leaves represent 
the result of the algorithm of the decision tree. The 
decision tree is also very effective with categorical and 
tolerant data in the presence of outliers and missing data.  
The Decision Tree is more accurate and faster, more 
efficient in terms of memory usage.  
Purpose: Evaluate software vulnerabilities based on 
CVSS settings.  
 
To elaborate our model, we have written the following 
algorithm in R programming language. This algorithm 
that we have named “SVTree” will allow us to build 
rules to evaluate the level of software Vulnerability. 
 
ALGORITHM 
 
𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑒 ∶ 𝑆𝑉𝑇𝑟𝑒𝑒 
𝑋:𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒 
𝑑𝑏𝐴𝑝𝑝:𝑇𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎 
𝑅:𝑅𝑢𝑙𝑒𝑠 
𝑌: 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 
𝐶:𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐿𝑒𝑣𝑒𝑙 
𝐵𝑒𝑔𝑖𝑛 
    (*Installation of packages*) 
   𝐼𝑛𝑝𝑢𝑡 (𝑃𝑎𝑐𝑘𝑎𝑔𝑒: caret) 
   𝐼𝑛𝑝𝑢𝑡 (𝑃𝑎𝑐𝑘𝑎𝑔𝑒: partykit) 
 
   (*Loading the database*) 
 

Input (𝑋) 
 
  (*Creating the "Level" variable*) 
𝑖𝑓𝑌 ≤= 3.9 𝑡ℎ𝑒𝑛 
            C < −"Low" 

  𝑒𝑙𝑠𝑒 𝑖𝑓𝑌 < 7 𝑡ℎ𝑒𝑛 
C < −"𝑀𝑒𝑑𝑖𝑢𝑚" 

   else 𝐶 < −High 
    End if 
  (*Data preprocessing and pretreatment*) 
  (* Partitioning of data into training and test samples*) 
 

𝑛𝑢𝑚𝐴𝑝𝑝 < −𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑎𝑡𝑎𝑃𝑎𝑟𝑡𝑖𝑜𝑛(X$C, p = 0.6) 
  𝑑𝑏𝐴𝑝𝑝 < −X[numApp, ] 

𝑑𝑏𝑇𝑒𝑠𝑡 < −X[−numApp, ] 
 
  (* Search for the best predicators (with the training) *) 
  (* names of the best predicators*) 
  (*Choice of optimizable parameters*) 
  (*Optimal model construction*) 
  (* Importance of predicators in the prediction of each 
class*) 
  (*Building the optimal model (Training)*) 
 
𝑀𝑡𝑟𝑒𝑒 < −𝑡𝑟𝑎𝑖𝑛(C, dbApp) 
 

(*Display the importance of predictors in the prediction of                                         
each class*) 

   (*Display of the best tree*) 
 
End 

6 LOGICAL RULES OF THE MODEL 

TO build the model, we are divided the dataset in two 
parts: 60% to build the model (train dataset) using Leave 
One Out cross validation, and 40% (test dataset) to 
evaluate the quality of the model. The model obtained is 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018                                                                                    1752 
ISSN 2229-5518 

IJSER © 2017 
http://www.ijser.org  

set of thirty-one (31) logical rules. Height (8) rules gives 
the conditions in which the software vulnerability level is 
low, fourteen (14) rules gives the conditions in which the 
software vulnerability level is medium and nine (9) rules 
gives the conditions in which the software vulnerability 
level is high. 

 

6.1 Rules of a higher software vulnerability level 
 
The rules characterizing software with high vulnerability 
are: 
  
Rule H1: 
IF    
    [AvailImpact = (Complete OR Partial)] AND  
    [ConfImpact = (Complete OR Partial)] AND 
    [AccessComplexity = (High OR Medium)] AND   
    [IntegImpact = Complete] AND 
    [AccessVector = (Network OR Remote)]    
THEN LEVEL = High 
     
Rule H2:  
IF 
    [AvailImpact = (Complete OR Partial)] AND 
    [ConfImpact = (Complete OR Partial)] AND 
    [AccessComplexity =  Low] AND   
    [Authentication = ( Multiple OR Single] AND 
THEN LEVEL = High     
 
Rule H3: 
IF 
    [AvailImpact = (Complete OR Partial)] AND 
    [ConfImpact = (Complete OR Partial)] AND 
    [AccessComplexity = (Low)] AND   
    [Authentication = Not Required] AND 
    [AccessVector  = ( Network OR Remote] AND 
    [IntegImpact  = (Complete OR Partial] 
THEN LEVEL = High     
 
Rule H4: 
IF 
    [AvailImpact = (Complete OR Partial)] AND 
    [ConfImpact = (Complete OR Partial)] AND 
    [AccessComplexity = (High OR Medium)] AND 
    [AccessComplexity = Low] AND 
    [Authentication = Not Required)] AND 
    [AccessVector = (Network OR Remote)] AND 
    [IntegImpact = (Complete OR Partial)] 
ALORS LEVEL = High    
Rule H5:  
IF 

    [AvailImpact = (Complete OR Partial)] AND 
    [ConfImpact = (Complete OR Partial)] AND 
    [AccessComplexity = Low] AND 
    [Authentication = Not Required] AND 
    [AccessVector = (Network OR Remote] AND 
    [IntegImpact = None] 
THEN LEVEL = High    
 
Rule H6:  
IF 
    [AvailImpact = (Complete OR Partial)] AND 
    [ConfImpact = None] AND 
    [AccessVector = (Network OR Remote] AND 
    [AccessComplexity = (High OR Medium)] 
THEN LEVEL = High     
 
Rule H7: 
IF 
    [AvailImpact = (Complete OR Partial)] AND 
    [ConfImpact = None] AND 
    [AccessVector =(Network OR Remote] AND 
    [AccessComplexity = Low] AND 
    [Authentication = Not required] 
THEN LEVEL = High  
 
Rule H8:  
IF 
    [AvailImpact = None] AND 
    [ConfImpact = Complete]  
THEN LEVEL = High   
 

6.2 Rules of a medium software vulnerability level 
 
The rules characterizing software with medium 
vulnerability are: 
 
Rule M1: 
IF 
    [AvailImpact = (Complete OR Partial)] AND 
    [ConfImpact = (Complete OR Partial)] AND 
    [AccessComplexity = (High OR Medium)] AND   
    [IntegImpact = Complete] AND 
    [AccessVector = Local] 
THEN LEVEL = Medium    
Rule M2: 
IF 
    [AvailImpact = (Complete OR Partial)] AND 
    [ConfImpact = (Complete OR Partial)] AND 
    [AccessComplexity = (High OR Medium)] AND   
    [IntegImpact = (None OR Partial)] AND 
    [AccessVector =(Local OR Network)] 
THEN LEVEL = Medium     

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018                                                                                    1753 
ISSN 2229-5518 

IJSER © 2017 
http://www.ijser.org  

 
Rule M3: 
IF  
    [AvailImpact = (Complete OR Partial)] AND 
    [ConfImpact = (Complete OR Partial)] AND 
    [AccessComplexity = (High OR Medium)] AND   
    [IntegImpact = (None OR Partial)] AND 
    [AccessVector = Remote] 
THEN LEVEL = Medium     
 
Rule M4:  
IF 
    [AvailImpact = (Complete OU Partial)] AND 
    [ConfImpact = (Complete OU Partial)] AND 
    [AccessComplexity = Low] AND 
    [Authentication= (Multiple OR Single)] 
THEN LEVEL = Medium     
 
Rule M5:  
IF 
    [AvailImpact = (Complete OR Partial)] AND 
    [ConfImpact = (Complete OR Partial)] AND 
    [AccessComplexity = Low] AND 
    [Authentication= (Multiple OR Single) ] 
THEN LEVEL = Medium     
 
Rule M6: 
IF 
    [AvailImpact = (Complete OR Partial)] AND 
    [ConfImpact = (Complete OR Partial)] AND 
    [AccessComplexity = Low] AND   
    [Authentication= Not Required] AND 
    [AccessVector = (Network OR Remote)] AND   
    [IntegImpact= None] 
THEN LEVEL = Medium     
 
Rule M7: 
IF 
    [AvailImpact = (Complete OR Partial)] AND 
    [ConfImpact = None] AND 
    [AccessVector = (Local OR Network)] AND   
THEN LEVEL = Medium     
 
 
Rule M8: 
IF 
    [AvailImpact = (Complete OR Partial)] AND 
    [ConfImpact = None] AND 
    [AccessVector = Remote] AND  
    [AccessComplexity = Low] AND   
    [Authentication= Single] 
THEN LEVEL = Medium     

 
 
Rule M9: 
IF 
    [AvailImpact = (Complete OR Partial)] AND 
    [ConfImpact = None] AND 
    [AccessVector = Remote] AND  
    [AccessComplexity = (Low OR Medium)] AND  
    [Authentication= Not Required] 
THEN LEVEL = Medium     
 
Rule M10 : 
IF 
    [AvailImpact = (Complete OR Partial)] AND 
    [ConfImpact = None] AND 
    [AccessVector = Remote] AND  
    [AccessComplexity = (Low OR Medium)] AND   
    [Authentication= Single] 
THEN LEVEL = Medium     
 
 
Rule M11: 
IF 
    [AvailImpact = None] AND 
    [ConfImpact = (None OR Partial)] AND 
    [IntegImpact = (Complete OR None)] AND  
    [AccessVector = Remote] AND  
    [AccessComplexity = (Low OR Medium)]  
THEN LEVEL = Medium     
 
Rule M12: 
IF 
    [AvailImpact = None] AND 
    [ConfImpact = (None OR Partial)] AND 
    [IntegImpact = (Complete OR None)] AND  
    [AccessVector = Remote] AND  
    [AccessComplexity = (Low OR Medium)] AND 
    [Authentication = Not Required] 
THEN LEVEL = Medium     
 
  

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018                                                                                    1754 
ISSN 2229-5518 

IJSER © 2017 
http://www.ijser.org  

Rule M13: 
IF 
    [AvailImpact = None] AND 
    [ConfImpact = (None OR Partial)] AND 
    [IntegImpact = Partial] AND 
    [Authentication = Not Required] AND 
    [AccessVector = Remote] AND  
    [AccessComplexity = (Low OR Medium)]  
THEN LEVEL = Medium     
 
Rule M14: 
IF 
    [AvailImpact = None] AND 
    [ConfImpact = (None OR Partial)] AND 
    [IntegImpact = Partial] AND  
    [Authentication = Single] AND 
    [AccessComplexity = Low] 
THEN LEVEL = Medium     
 

6.3 Rules of a lower software vulnerability level 
 
The rules characterizing software with lower 
vulnerability are: 
 
Rule L1: 
IF 
    [AvailImpact = (Complete OR Partial)] AND 
    [ConfImpact = None] AND 
    [AccessVector= (Local OU Network)]  
THEN LEVEL = Low     
 
Rule L2 : 
IF  
    [AvailImpact = (Complete OR Partial)] AND 
    [ConfImpact = None] AND 
    [AccessVector= Remote] AND 
    [AccessComplexity= High] 
THEN LEVEL = Low     
 
Rule L3 : 
IF 
    [AvailImpact = (Complete OR Partial)] AND 
    [ConfImpact = None] AND 
    [AccessVector= Remote] AND 
    [AccessComplexity= High] 
THEN LEVEL = Low     
 
 
 
 
Rule L4 : 

IFI 
    [AvailImpact = None] AND 
    [ConfImpact = (None OR Partial)] AND 
    [IntegImpact= (Complete OR None)] AND 
    [AccessVector= Remote] AND 
    [AccessComplexity= High] 
THEN LEVEL = Low     
 
Rule L5 : 
IF 
    [AvailImpact = None] AND 
    [ConfImpact = (None OR Partial)] AND 
    [IntegImpact= (Complete OR None)] AND 
    [AccessVector= Remote] AND 
    [AccessComplexity= (Low OR Medium)] AND 
    [Authentication= Single] 
THEN LEVEL = Low     
 
Rule L6 :  
IF 
    [AvailImpact = None] AND 
    [ConfImpact = (None OR Partial)] AND 
    [IntegImpact= Partial] AND 
    [Authentication= Not Required] AND 
    [AccessVector = (Local OR Remote)]  
THEN LEVEL = Low     
 
Rule L7: 
IF 
    [AvailImpact = None] AND 
    [ConfImpact = (None OR Partial)] AND 
    [IntegImpact= Partial] AND 
    [Authentication= Not Required] AND 
    [AccessVector= Remote] AND 
    [AccessComplexity= High]  
THEN LEVEL = Low     
 
Rule L8: 
IF 
    [ConfImpact = (None OR Partial)] AND 
    [IntegImpact= Partial] AND 
    [Authentication= Not Required] AND 
    [AccessVector= Remote] AND 
    [AccessComplexity= High]  
THEN LEVEL = Low     
 
  

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018                                                                                    1755 
ISSN 2229-5518 

IJSER © 2017 
http://www.ijser.org  

Rule L9: 
IF 
    [AvailImpact = None] AND 
    [ConfImpact= (None OR Partial)] AND 
    [IntegImpact= Partial] AND 
    [Authentication= Single] AND 
    [AccessComplexity= Medium]  
THEN LEVEL = Low     
 

7. PERFORMANCE OF THE MODEL 

The software vulnerability level develop in this paper is 
a decision tree classification model. To study the model 
performance, we use the most used performance metrics 
in machine learning. This metrics are the error prediction 
rate, the accuracy and the Kappa index for the global 
model quality; and the precision, the recall and the F1-
measure for the quality of the prediction of each 
vulnerability level. 

 

7.1 Global quality of the model 
 

All the metric to measure the global quality of the model 
are based on the confusion matrix. The confusion matrix 
on the test dataset in show in the table below:  

 

 

 

 

  , y lead to Higth By directly implementing the 
Ctree algorithm, we obtain the following 
decision tree and rules to evaluate a 

 
We can see that all correct predictions are located in the 
diagonal of the table, so prediction errors can be easily 
found in the table, as they will be represented by values 
outside the diagonal. This confusion matrix shows that 

the main test data have correctly been classify. The 
values of the global predictive quality indicators are:  

• Accuracy : 0.9861267 
• Kappa : 0.9769574 
• Error prediction rate : 0.01387327 

These indicator shows that the model is have a very good 
quality for predict the software vulnerability levels. 

7.1 Quality of each vulnerability level prediction 
 
For each software vulnerability level (predicted classes), 
the precision, the recall and the F1-measure compute 
using the test dataset are: 
 
 

 
 
 
 
 
 
 
 

 
 
These results show that the model predict very well each 
software vulnerability level. The advantage of our model 
is that we do not need to know the CVS score to compute 
the software vulnerability level.  

 

8. CONCLUSION  
 
In this paper, we proposed a machine learning based 
approach to predict software vulnerability level instead 
of compute CVSS score to be able to get the same 
vulnerability level. Our method is very simple to use 
compare to the complexity of CVSS Score computing 
because it is compose only by a set of logical rules. 
The model obtained have a very good prediction 
performance and can be use to evaluate quickly software 
vulnerability in industry and in research.  
 

  

TABLE 7 
CONFUSION MATRIX ON TEST DATASET 

 

 
Observed Vulnerability Levels 

 

Predicted 
Vulnerability 

Levels 

 
High Low Medium 

Higth 1032 0 8 

Low 0 343 9 

Medium 11 9 1255 

 

TABLE 8  
DETECTION QUALITY OF EACH CLASS INDIVIDUALLY 

 

 Precision Recall F1 

Software 
Vulnerability 

Level 

High 0.9923077 0.9894535 0.9908785 
Low 0.9744318 0.9744318 0.9744318 
Medium 0.9843137 0.9866352 0.9854731 

 IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 9, Issue 11, November-2018                                                                                    1756 
ISSN 2229-5518 

IJSER © 2017 
http://www.ijser.org  

REFERENCES 
 

[1] W. K. Syed Shariyar Murtaza, «Mining Trends and 
Patterns of Software Vulnerabilities, » The Journal of 
Systems & Software, 28 February 2016 

[2] FIRST.org, “Forum of Incident Response and Security 
Teams,”Available at: https://www.first.org. 

[3] V. N. F. Siv Hilde Houmb a, «Quantifying security risk 
level from CVSS estimates of frequency and impact, » The 
Journal of Systems and Software, August 2009. 

[4] J. T. John Chambers, «Available from: 
http://www.first.org/cvss/v1/guide.html., » oct 2014. 

[5] K. S. S. R. Peter Mell, «A complete guide to the system 
version 2.0, http://www.first.org/cvss/cvss-guide.pdf» 
June 2007. 

[6] CVE Details, “The Ultimate Security Vulnerability 
Datasource”, Available at : https://www.cvedetails.com 

[7] National Institute of Standards and Technology, 
“National Vulnerability Database,” Available at:  
http://nvd.nist.gov/statistics.cfm 

[8] SANS Institute, “SANS Information Security Training,” 
Available at: http://www.sans.org . 

[9] Secunia Research Community, Available at: 
https://secuniaresearch.flexerasoftware.com/advisories 

[10] X-Force, X-Force frequently asked questions. Available at: 
http://935.ibm.com/services/us/iss/xforce/faqs.html 

[11] Vupen Security, Available at: http://www.vupen.com 

[12] P. Mell, K. Scarfone et S. Romanosky, «Common 
Vulnerability Scoring System, » IEEE, pp. 85-89, Nov.-
Dec. 2006. 

[13] I. Witten, E. Frank. (1999). Data Mining: Pratical Machine 
Learning Tools and Techniques. Morgan Kaufmann. 

[14] Jones O, Maillardet R, Robinson A. “Introduction to 
Scientific Programming and Simulation Using R”. 
Chapman & Hall/CRC, Boca Raton, 2009. 

[15] Max Kuhn. Contributions from Jed Wing, Steve Weston, 
Andre Williams, Chris Keefer, Allan Engelhardt, Tony 
Cooper, Zachary Mayer, Brenton Kenkel, the R Core 
Team, Michael Benesty, Reynald Lescarbeau, Andrew 
Ziem,Luca Scrucca, Yuan Tang, Can Candan and Tyler 
Hunt. (2018). caret: Classification and Regression 
Training.R package version 6.0-80. https://CRAN.R-
project.org/package=caret 

[16] R. Ihaka and R. Gentleman. “R: A language for data 
analysis and graphics”. Journal of Computational and 
Graphical Statistics, 5:299–314, 1996. 

[17] Torsten Hothorn, Achim Zeileis (2015). partykit: A 
Modular Toolkit for Recursive Partytioning in R.Journal 
of Machine Learning Research, 16, 3905-3909. URL 
http://jmlr.org/papers/v16/hothorn15a.html 
 
 

 
 

 
 

 
 IJSER

http://www.ijser.org/
https://www.first.org/
http://www.first.org/cvss/cvss-guide.pdf
http://nvd.nist.gov/statistics.cfm
http://www.sans.org/
https://secuniaresearch.flexerasoftware.com/advisories
http://www.vupen.com/
https://cran.r-project.org/package=caret
https://cran.r-project.org/package=caret
http://jmlr.org/papers/v16/hothorn15a.html

	1 Introduction
	2 Related Works
	3 Methods Of Vulnerability Assement
	3.1 Qualitative Method
	The IBM® X-Force® Vulnerability Classification System method is a typical example of a qualitative method. In this method, security researchers directly give a level of threat (high, medium and low) for a vulnerability based on its attributes.

	3.2 Quantitative Method
	The NVD is the U.S. government's repository for standards-based vulnerability management data represented using the Security Content Automation Protocol (SCAP). This data automates vulnerability management, security measures and compliance. The NVD in...
	The NVD supports the Common Vulnerability Scoring System (CVSS) version 2 standard initiative for all CVE vulnerabilities. The NVD provides low, medium, and high severity scoring in addition to the numerical CVSS scores. CVSS is a well-known quantitat...
	The scores are calculated in order so that the base score is used to calculate the time score and the time score is used to calculate the environmental score.

	4 Cvss Score Analysis
	To give the basic score of a vulnerability, this calculator uses six parameters which are

	5 Proposed Approach
	5.1 Building The Vulnerability Database
	To build the database, we collected data from the NVD and Cvedetail.com [6], using queries on the CVSS score, years of vulnerability discovery and types of vulnerabilities. After receiving the data, we proceed to extract the redundant information. whi...
	5.2 Data Preprocessing And Preparation
	5.3 Model Construction (Decision Tree)
	6 Logical rules of the model
	TO build the model, we are divided the dataset in two parts: 60% to build the model (train dataset) using Leave One Out cross validation, and 40% (test dataset) to evaluate the quality of the model. The model obtained is set of thirty-one (31) logical...
	6.1 Rules of a higher software vulnerability level
	6.2 Rules of a medium software vulnerability level
	6.3 Rules of a lower software vulnerability level
	7. Performance of the model
	The software vulnerability level develop in this paper is a decision tree classification model. To study the model performance, we use the most used performance metrics in machine learning. This metrics are the error prediction rate, the accuracy and ...
	7.1 Global quality of the model
	, y lead to Higth By directly implementing the Ctree algorithm, we obtain the following decision tree and rules to evaluate a
	7.1 Quality of each vulnerability level prediction
	8. Conclusion
	References
	[2] FIRST.org, “Forum of Incident Response and Security Teams,”Available at: https://www.first.org.
	[3] V. N. F. Siv Hilde Houmb a, «Quantifying security risk level from CVSS estimates of frequency and impact, » The Journal of Systems and Software, August 2009.
	[5] K. S. S. R. Peter Mell, «A complete guide to the system version 2.0, http://www.first.org/cvss/cvss-guide.pdf» June 2007.
	[6] CVE Details, “The Ultimate Security Vulnerability Datasource”, Available at : https://www.cvedetails.com
	[7] National Institute of Standards and Technology, “National Vulnerability Database,” Available at:  http://nvd.nist.gov/statistics.cfm
	[8] SANS Institute, “SANS Information Security Training,” Available at: http://www.sans.org .



